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Abstract In numbers of industrial fields, many fil-
tering algorithms of industrial signals, mechanism-
based modeling methods and control strategies are
based on the hypothesis of white noise. However, some
researchers propose that the colored noise is closer to
the real noise than the white noise. Then, whether the
noise is the white noise, the colored noise or other
else? And what is the intrinsic dynamic characteris-
tics of the noise? In this paper, noise signals of ther-
mal variables from rotary kiln are extracted and their
chaotic, statistical and multifractal characteristics are
analyzed to answer the two questions. Based on the
experimental results, it is the first time to discover that
they are not the white noise or the monofractal colored
noise but have the high-dimensional chaotic charac-
teristic, that is, they are determinate and predictable
for short term theoretically. However, some models
are failed to predict them. Then, further experimental
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results imply those noise signals have both persistent
and anti-persistent multifractal characteristics. In par-
ticular, the latter is a reason to failed predictions of noise
signals. Moreover, it is firstly discovered that the mul-
tifractality of each noise signal is generated mainly by
the long-term temporal correlation. Finally, two ideas
aboutmodelingmultifractality of noise from rotary kiln
are proposed as the future work.

Keywords Rotary kiln · Noise · Statistical charac-
teristic analysis · Chaotic characteristic analysis ·
Multifractal characteristic analysis

1 Introduction

The extensive presence of noise influences any sys-
tem in real world. In particular, in industrial fields,
noise interferes the detection of useful signals, like the
detection of temperature signal and current signal. In
order to conveniently characterize the noise in indus-
trial fields, it is widely regarded as the white noise by
many researchers. Then, many classical filtering algo-
rithms, mechanism-based modeling methods and con-
trol strategies based on the hypothesis of white noise
are proposed, for instance the Kalman filter and the
subspace identification method. And, the robustness of
many data-based techniques is evaluated by using the
white noise. Furthermore, the hypothesis ofwhite noise
is widely used in other fields [1–4]. Nevertheless, the
white noise is only a hypothesized ideal mathematical
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model and does not really exist in real world. Some
researchers in different fields pointed out that the col-
ored noise-based hypothesis may be closer to the real
noise than thewhite noise-based hypothesis [5–13]. For
example, biological populations [10], geophysics [11],
climate [12] and meteorological [13] are influenced by
the environment variables with colored noise. Then,
whether the noise from industrial fields is the white
noise, the colored noise or other else?

There are many literatures about the noise. Some
researchers proposed many algorithms to accurately
generate known noise signals (the white noise, the pink
noise and the brown noise) and studied their charac-
teristics [14–17]. Some researchers analyzed behav-
iors of the noise from many practical dynamic sys-
tems and their influences to the practical dynamic sys-
tems (or models) in different fields [4,6,11–13,18–
22]. Some researchers invented various methods to
detect the useful signal from the environment with
noise. Some researchers developed many denoising
algorithms for the one-dimensional data [9,23] and the
two-dimensional data [24–27]. Some researchers dis-
cussed noise reduction technologies in various actual
fields, like aircraft noise reduction technologies [28].
Some researchers proposed many measurement meth-
ods of the noise in different fields, like the measure-
ment method of the ultralow voltage noise in elec-
tronic devices [29]. Those works contribute the study
and application of the noise in various fields. However,
they do not involve the inherent dynamic characteris-
tics (such as chaotic and multifractal behaviors) of the
noise, except that the fractal behaviors of themonofrac-
tal noise (like the white noise and the colored noise)
are analyzed. Moreover, some different kinds of time
series (like the financial time series [30]) with random
representations,mistakenly recorded as randombefore,
have been discovered to exist intrinsic chaotic andmul-
tifractal characteristics, that is, the dynamic behaviors
are the profounder view to recognize and distinguish
the time series. Moreover, Gao [31] has discovered
that the noise from dehydration tower of a chemical
plant exists the high-dimensional chaotic characteris-
tic. Enlightened by his discovery, the chaotic behavior
of the noise from the rotary kiln is discovered. But the
noise is not predictable for short term, which means
the noise from the rotary kiln has other undiscovered
behaviors. Thus, in this paper, basedonprevious studies
about noise (especially Gao’ work [31]), two questions
are further explored: (1) What are the dynamic char-

acteristics of noise from rotary kiln? (2) Whether the
noise from rotary kiln is the white noise, the colored
noise or other else?

The rotary kiln is a kind of large thermal equip-
ment with many production links and widely used in
metallurgy, building materials, steel and other fields.
As the dynamic functions of the rotary kiln and its
noise are unknown, in this paper, data-based methods
are used to analyze the chaotic, statistical and multi-
fractal characteristics of noise signals of thermal vari-
ables from rotary kiln. Firstly, those noise signals are
extracted by using the frequency-based method and the
time-based method, respectively. Secondly, the chaotic
characteristics of noise signals are analyzed based on
the phase space reconstruction (PSR) method [32,33]
and the chaotic criterion. Then, the high-dimensional
chaotic characteristic of those noise signals from the
rotary kiln is discovered for the first time,which implies
that those noise signals are determinate and theoreti-
cally predictable for short term. However, after further
experiments, many models are failed to predict those
determinate noise signals, which contradicts the short-
term predictability of chaos. Thirdly, statistical char-
acteristics of those noise signals are analyzed by the
surrogate method [34–41]. And it is firstly discovered
that the noise from the rotary kiln is not the white noise
or the colored noise. Fourthly, in order to find out the
reason of those failed predictions, multifractal charac-
teristics of those noise signals are analyzed. Then, it is
the first time to discover that each noise signal has both
the persistent and anti-persistentmultifractal character-
istics. They are two contradictory features, which inter-
actively together decide the whole correlation and fluc-
tuation of the noise from rotary kiln. What is more, it
also means the intrinsic dynamic mechanisms of noise
from rotary kiln are more complex than those of the
monofractal colored noise signals (like the pink noise
and the brown noise). In particular, the anti-persistent
multifractal characteristic is a reason why determinate
noise signals from rotary kiln are predicted unsuccess-
fully, but it cannot negate the predictable characteristic
of the noise from rotary kiln. Fifthly, based on con-
trast experiments, it is also firstly discovered that the
multifractality of noise from rotary kiln is generated
by the temporal correlation and wide probability den-
sity distribution together. In particular, the former is
the main factor. Finally, based on the discoveries in our
paper, previousworks ofmultifractal theories andmod-
els [42–44], two ideas about modeling multifractality
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of the noise signals are proposed as the future work in
conclusion.

The rest sections of the paper are organized as fol-
lows: In Sect. 2, the study background and extrac-
tion of noise signals of thermal variables are intro-
duced. In Sect. 3, chaotic characteristics of those noise
signals are studied. In Sect. 4, the noise from the
rotary kiln is distinguished from the white noise and
the colored noise. In Sect. 5, multifractal characteris-
tics of those noise signals are researched, the reason
why some models are failed to predict those determi-
nate noise signals is discovered, and the multifractal
source of those noise signals is analyzed. In Sect. 6,
the conclusion is summarized and two ideas about
modeling multifractality of those noise signals are dis-
cussed.

2 Study background and extraction of noise of
thermal variables

2.1 Study background

Parts of the rotary kiln equipment for sintering process
are shown in Fig. 1a. And the schematic configura-
tion of the sintering process of rotary kiln is shown
in Fig. 1b, where the refractory steel cylinder whose
length and diameter respective are 90–110m and 3.5–
4.5m is installed obliquely with a small angle. More-
over, a sequenceof physical changes and chemical reac-
tions take place with the movement of the raw mate-
rials from the end of the kiln to the head of the kiln.
Emphatically, the primary air mixed with the coal pow-
ders is spouted into the burning zone in which the raw
materials are sintered into the clinkers. In particular, the
rotary kiln contains five key thermal detection variables
which are used to infer the sintering state of rotary kiln
in practice, that is, the flame temperature (recorded as
FT), the temperature of the head of the kiln (recorded as
THK), the temperature of the end of the kiln (recorded
as TEK), the current of the main motor (recorded as
CMM) and the current of the cooling motor (recorded
as CCM), where the FT is measured by the colorimet-
ric pyrometer (recorded as CP), the THK and TTK
are measured by the thermocouple, the CMM and the
CCM are current of the motor which severally drive the
refractory steel cylinder and cooler and they are mea-
sured by the current transformer. Themeasured general
locations of the five key thermal detection variables are

labeled with red in Fig. 1a, b. And themeasuring equip-
ment is not drawn except the CP.

2.2 Extraction of noise signals of thermal variables

As the functions of the rotary kiln and its noise are
both unknown, noise signals from rotary kiln will be
analyzed by data-based methods in this paper. Then, it
is a key to extract the noise signals from the above five
thermal variables in this paper. However, it is a univer-
sal challenge to extract noise in many industrial fields.
There are not universal denoising methods, and many
researchers denoise based on limited information and
their experience. Fortunately, there is an important cri-
terion for extracting noise in many practical industrial
processes (such as the rotary kiln), that is, compared
with the slow change of effective signals, relative noise
changes much fast along time [31,45]. Moreover, in
order to ensure the analyzed results of noise signals
of thermal variables from rotary kiln are credible and
non-special, some works are carried out as follows:

(1) As the dynamic model of rotary kiln is unknown,
all the thermal detection signals in this paper are
not simulate data but real data which are collected
from the Inner Mongolia branch of China Datang
Corporation.

(2) Two groups of real thermal detection signals
with different sintering conditions are chosen and
recorded as G1 and G2 where each group con-
tains above five key thermal detection signals, as
shown in Fig. 2. What is more, each series con-
tains 10,000 sampling points and each sampling
interval is 1min, that is, the time length of each
series is about 7days, which can reflect most of
the sintering conditions of rotary kiln.

(3) The methods based on the frequency and based
on the time are, respectively, used to extract
noise from above two groups of thermal detec-
tion signals (G1 and G2). One is the wavelet
package decompose (WPD) method [46,47]. It
is the frequency-based method and introduced in
“Appendix A.1.” Then, the extracted noise sig-
nals from G1 and G2 are, respectively, recorded
as G1_wpd (including wpd1, wpd2, wpd3, wpd4
and wpd5) and G2_wpd (including wpd6, wpd7,
wpd8, wpd9 and wpd10), as shown in Figs. 3 and
4. The other method is called the Gao method and
introduced in “Appendix A.2” in this paper. Its
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Fig. 1 a Parts of the rotary kiln equipment for sintering process in the Inner Mongolia branch of China Datang Corporation. b The
schematic configuration of the sintering process of rotary kiln

nature is the moving average, and it is the time-
based method. The extracted noise signals from
G1 and G2 are, respectively, recorded as G1_Gao

(including Gao1, Gao2, Gao3, Gao4 and Gao5)
and G2_Gao (including Gao6, Gao7, Gao8, Gao9
and Gao10), as shown in Figs. 3 and 4.
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Fig. 2 Two groups of original data (G1 and G2). The G1 contains (a, c, e, j, i), and the G2 contains (b, d, f, h, j). And the same thermal
detection variables are drawn with same color. (Color figure online)

Those extracted noise signals are from different
parts of rotary kiln, and their original thermal signals
do not belong to the same type of signal. Thus, if all
the noise signals have some same characteristics, then

the same characteristics are believable. Moreover, con-
trasted with the original thermal signals in Fig. 2, the
extracted noise signals in Figs. 3 and 4 seem more dis-
order, which may indicate that the noise signals are
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Fig. 3 Two groups of noise signals from the G1. G1_wpdmeans
five noise signals are extracted fromG1 by theWPDmethod and,
respectively, displayed in (a, c, e, j, i). G1_Gao means five noise
signals are extracted from G1 by the Gao method and, respec-

tively, displayed in (b, d, f, h, j). And noise signals from same
thermal detection variable are drawn with same color. (Color
figure online)

random without any deterministic mechanism. In par-
ticular, for distinguishing five kinds of signals conve-
niently, the same thermal detection signals and rela-
tive noise signals are drawn with the same color in this
paper.

3 Chaotic characteristic analysis

If dynamical function is known, chaotic analysis can
be executed like the reference [48,49]. However, the
dynamical functions of the rotary kiln and its noise are
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Fig. 4 Two groups of noise signals from the G2. G2_wpdmeans
five noise signals are extracted from G2 by the WPD method
and, respectively, displayed in (a, c, e, j, i) and G2_Gao means
five noise signals are extracted from G1 by the Gao method

and, respectively, displayed in (b, d, f, h, j). And noise signals
from same thermal detection variable are drawn with same color.
(Color figure online)

unknown, the chaotic analysis of noise signals from
rotary kiln is accomplished based on the PSR method

[32,33] and some chaotic criteria; for example, the frac-
tal dimension must be finite and non-integer, one of the
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Lyapunov exponents must be positive at least, and the
Kolmogorov entropy must be finite and positive. If one
of the above three criteria is satisfied, those noise sig-
nals are chaotic.

3.1 Phase space reconstruction method

Based on thePSRmethod [32,33], the one-dimensional
noise {xi | i = 1, . . . , N } can be expanded into an m-
dimension phase space to achieve its inner dynamic
characteristics as follows:

Y j = (x j , x j+t , . . . , x j+(m−1)t ), (1)

whereY j ( j = 1, . . . , M) is them-dimension state vec-
tor and represents the state of system at any time. M is
the number of reconstructed phase points and satisfies
M = N − (m − 1)t , and m is the embedding dimen-
sion. t is the index lag, if the sampling interval is τs ,
then the delay time τ = tτs , so t and τs are not distin-
guished unless necessary. Moreover, the PSR method
contains two parameters: one is the delay time which is
estimated by themutual information (MI)method [50];
another is the embedding dimensionwhich is estimated
by the false nearest neighbor (FNN)method [51] in this
paper.

The mutual information of the series xi (recorded as
X ) and its delay time series xi+t (recorded as X + t)
are defined as follows:

I (X, X + t) = H(X) + H(X + t) − H(X, X + t),
(2)

where I (X, X + t) is the mutual information of the
series X and X + t , H(X) and H(X + t) represent
the entropy of the series X and X + t , respectively,
H(X, X+t) is the joint entropy of the series X and X+
t . For each t , there is a mutual information value, that
is, the mutual information is the function of t . And the
optimal delay time is relative to the firstminimumof the
function. As shown in Figs. 5 and 6, each optimal delay
time point of the noise signals is highlighted.Moreover,
when t = 0, the mutual information of X and X is the
biggest. Then, in order to display the optimal delay
time point visibly, the point with t = 0 is not drawn in
Figs. 5 and 6. Please see reference [50] for the details.

After the one-dimensional time series is embed-
ded into m-dimensional Euclidean space, the distance
between any phase point Y j and its nearest phase point
Y i is:

Rm( j) = ∥
∥Y j − Y i

∥
∥
2 =

[
m−1
∑

k=0

(x j+kt − xi+kt )

] 1
2

,

(3)

where the definition of the phase points Y j and Y i

is in Eq. (3) and ‖·‖2 represents the 2-norm in the
Euclidean space. Then, when the one-dimensional time
series is embedded into (m + 1)-dimension Euclidean
space, the new distance between them is:

Rm+1( j) = ∥
∥Y j − Y i

∥
∥
2

=
[
m−1
∑

k=0

(x j+kt − xi+kt )

] 1
2

=
[

R2
d( j) + (x j+mt − xi+mt )

2
] 1
2 ;

(4)

then,

[

R2
d+1( j) − R2

d( j)

R2
d( j)

] 1
2

= |x j+mt − xi+mt |
Rd( j)

, (5)

making

R j = |x j+mt − xi+mt |
Rd( j)

. (6)

Y i will be a false nearest neighbor of the phase points
Y j when R j is bigger than Rtol , a given threshold. For
each m, the number of false nearest neighbors points
of all the phase points is counted to calculate the per-
centage of the false nearest neighbor points (recorded
as FNN percentage), that is, the FNN percentage is the
function ofm. In theory, the optimal embedding dimen-
sion m is relative to the FNN percentage which drops
to 0%, but in practice, it is small enough when the FNN
percentage drops to 1%. The result is drawn in Fig. 7.

3.2 Estimation of largest Lyapunov exponent

Chaotic system is extremely sensitive to the initial
conditions, that is, two initially close trajectories will
diverge along with time, and the diverging behavior
is measured quantitatively by the Lyapunov exponent
[52]:

d(t) = eλt , (7)
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Fig. 5 Mutual information (MI) curves of the G1. a wpd1, b gao1, c wpd2, d gao2, e wpd3, f gao3, g wpd4, h gao4, i wpd5, j gao5.
And noise signals from same thermal detection variable are drawn with same color. (Color figure online)

where d(t) stands for the diverging distance between
two phase points at time t and λ is the Lyapunov expo-
nent. Wolf [52] proposed the method to estimate the
Lyapunov exponent spectrum in which the Lyapunov

exponents are arranged from large to small. As the Lya-
punov exponent represents divergence of dynamic sys-
tem, the sum of Lyapunov exponents of dissipative sys-
temmust be negative [53], that is, if the dynamic system
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Fig. 6 Mutual information (MI) curves of the G2. a wpd6, b gao6, c wpd7, d gao7, e wpd8, f gao8, g wpd9, h gao9, i wpd10, j gao10.
And noise signals from same thermal detection variable are drawn with same color. (Color figure online)

is chaotic, its largest Lyapunov exponent must be pos-
itive. Then, the largest Lyapunov exponent (recorded
as λ1) is estimated by the Wolf method which is sim-
ply introduced as follows. Set Y (t0) is a phase point in

reconstructed phase space, and its nearest phase point is
Y0(t0); then, the distance between them is L0. The dis-
tance of the two points increases along with time. If the
distance is bigger than the given value ε at time t1, that
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Fig. 7 False nearest neighbor (FNN) curves. a G1_wpd, b G1_gao, c G2_wpd, d G2_gao. And noise signals from same thermal
detection variable are drawn with same color

is, L ′
0 = |Y (t1) − Y0(t1)| > ε, the two trajectories are

diverged. Then, a fit point Y1(t1) should be sought out
in the neighborhood of Y (t1), and the point Y1(t1)must
satisfy two conditions: 1) L1 = |Y (t1) − Y1(t1)| < ε;
2) Y (t1) and Y1(t1) construct a line, and Y (t1) and
Y0(t1) also construct a line; then, the angle between the
two lines must be the smallest. Then, the above pro-
cess is repeated n times, as shown in Fig. 8. And the
largest Lyapunov exponent is estimated by averaging
the diverging distance of the n iterations:

λ1 = 1

tn − t0

n−1
∑

i=0

ln
L ′
i

Li
= 1

n

n−1
∑

i=0

ln
L ′
i

Li
. (8)

3.3 Results and analysis

Results of the chaotic characteristic analysis are shown
in Table 1. Despite that all the largest Lyapunov expo-
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Fig. 8 Schematic configuration of the Wolf method

nents are not the same, it is obvious that they are all pos-
itive, which is a strong indication to the presence of the
chaotic characteristic in noise signals from rotary kiln,
that is, the noise from rotary kiln is determinate signal
rather than random or the white noise. Moreover, as all
m > 3, the noise from rotary kiln is high-dimensional
chaotic which implies the dynamics of the noise from
rotary kiln is very complex. Besides, Gao [31] also dis-
covered that the noise signal from dehydration tower
of a chemical plant has the high-dimensional chaotic.
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Table 1 Chaotic
characteristics of noise from
rotary kiln (where the t is
the delay time, the m is the
embedding dimension and
the λ1 is the largest
Lyapunov exponent)

t m λ1 t m λ1

wpd1 7 5 0.5490 Gao1 4 6 0.1770

wpd2 3 6 0.1470 Gao2 28 6 0.0547

wpd3 6 7 0.1510 Gao3 11 5 0.1666

wpd4 3 5 0.3477 Gao4 4 6 0.0836

wpd5 4 6 0.1746 Gao5 12 7 0.0263

wpd6 8 5 0.4123 Gao6 6 5 0.3091

wpd7 3 5 0.2123 Gao7 22 5 0.0682

wpd8 4 5 0.3250 Gao8 5 7 0.0903

wpd9 3 6 0.3194 Gao9 6 6 0.1811

wpd10 6 6 0.4167 Gao10 12 7 0.0617

Thus, the two discoveries imply noise from many
industrial fields may have the chaotic characteristic.

Theoretically, the chaos is predictable for short term
[53], that is, the noise from rotary kiln is predictable.
Then, several models are used to predict the noise
signals from rotary kiln but failed. Maybe, the noise
from rotary kiln has some undiscovered characteristics
which impede effective prediction of noise.

4 Statistical characteristic analysis based on the
surrogate method

The surrogate data method introduced by Theiler [34]
is used to detect the characteristic of data. The method
contains two steps: The first step is to generate the
surrogate data through reserving certain properties of
original data and destroying others, and generated sur-
rogates are corresponding to a designated null hypoth-
esis. The second step is to choose discriminative statis-
tics to measure the original data and each surrogate.
If the discriminative statistic exists a significant differ-
ence, the null hypothesis is rejected, that is, the original
data and the surrogates are not from the same dynamic
process, vice versa. There are many surrogate methods
for different kinds of data [34–41]. Among of them,
two linear surrogate methods proposed by Theiler [34]
are discussed here to distinguish the noise from the
white noise and the colored noise. One is that the data
are from the independent identically distributed (IID)
random process and related surrogate data are gener-
ated by the random shuffle (RS) algorithm. The other is
that the data are from a linearly filtered IID noise pro-
cess and related surrogate data are generated by the
Fourier transform (FT) algorithm. Other researchers

further pointed out that the former and the latter are,
respectively, regarded as the null hypotheses of the
white noise and colored noise [36,54,55]. Thus, if the
two null hypotheses are rejected, the noise can be dis-
tinguished from the white noise and the colored noise.

4.1 The surrogate analysis based on the null
hypotheses of the white noise

Small [36] pointed out that the surrogate data gener-
ated by the RS algorithm have the same probability
distribution as the original data, but have not tempo-
ral correlation, that is, if the noise from the rotary kiln
has temporal correlation, they are not the white noise.
Therefore, the surrogate analysis process could be sim-
plified, that is, the temporal correlation of only the noise
from the rotary kiln need be checked by the Ljung–Box
Q-test (LBQ test) which is defined as follows:

Q = N (N + 2)
l

∑

k=1

ρ̂2
k

N − h
, (9)

where N is the number of the series, l is the sum of
autocorrelation lags, and ρk is the autocorrelation at
lag k and ρ̂k is the estimated value of ρk . And the null
hypothesis is that the first l autocorrelations are jointly
zero, that is, H0 : ρ1 = ρ2 = · · · = ρl = 0. Under
the null hypothesis, the asymptotic distribution of Q is
Chi-square with l degrees of freedom.

The results are shown in Table 2. And it is obvious
that each noise from the rotary kiln has temporal cor-
relation, that is, the noise from the rotary kiln is not the
white noise.
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Table 2 Results of LBQ test of the noise from the rotary kiln

p value of
LBQ test

p value of
LBQ test

wpd1 0 Gao1 0

wpd2 0 Gao2 0

wpd3 0 Gao3 0

wpd4 0 Gao4 0

wpd5 0 Gao5 0

wpd6 0 Gao6 0

wpd7 0 Gao7 0

wpd8 0 Gao8 0

wpd9 0 Gao9 0

wpd10 0 Gao10 0

4.2 The surrogate analysis based on the null
hypotheses of the colored noise

The null hypothesis is that the noise from the rotary
kiln is colored noise. Moreover, the related surrogate
data are generated by the Fourier transform algorithm
(please see [34] for the detail). The number of the sur-
rogate data is chosen based on the conclusion of the
Theiler [34], that is, for a two-sided test,M = 2K/α−1
surrogates should be generated, where K is a positive
integer and α is the probability of false rejection cor-
responding to a level of significance (1 − α) × 100%.
As larger values of K will make a more sensitive test
than K = 1, K = 1 is used here to minimize the com-
putational effort of generating surrogates [37]. Then,
39 surrogate data should be generated at least for two-
sided tests at a significance level of 95%.Moreover, the
more surrogates are used; the more believable the test
is [37], then 128 surrogates are generated here for each
of the noise data. There are many discriminating statis-
tics for the test, such as the prediction error, correlation
dimension, entropy and the largest Lyapunov exponent.
As the calculations of the correlation dimension and the
entropy involve the selection of linear range, the results
are influenced easily. In particular, some monofrac-
tal colored noise also have the correlation dimension.
Moreover, as the noise from the rotary kiln cannot be
availably predicted, the prediction error also cannot be
used as the discriminating statistic. Then, the largest
Lyapunov exponent is used as the discriminating statis-
tic, which can be regarded as a further detection. And
the significance S of the discriminating statistic is com-
puted as follows:

S = |λ1 − λ|
σλ

, (10)

where the λ1 is the largest Lyapunov exponent of the
original noise; the λ and the σλ, respectively, are the
mean and standard deviation of the related surrogate
data. Under the assumption of Gaussian distribution
of statistic largest Lyapunov exponent (λ), the value
of S > 1.96 indicates that the null hypothesis will be
rejected at 0.05 significance level, that is, the original
noise is not random but deterministic. What is more,
the p value of the S is a probability of observing a
significance S. When p < 5%, the null hypothesis is
rejected. Moreover, the p value is given by the Gaus-
sian error function, that is, p = erfc(S/

√
2). And the

Gaussian error function erfc is calculated as follows:

erfc(x) = 1 − 2√
π

∫ ∞

x
e−t2dt. (11)

The results of the surrogate analysis are displayed
in Tables 3 and 4. It is obvious that all the values of
the significance S are bigger than 1.96 both in Tables 3
and 4. And all the values of the p value are less than
5% both in Tables 3 and 4. Thus, the null hypothesis
should be rejected and the noise from the rotary kiln is
not colored noise.

Thus, based on above surrogate analyses, we con-
firm that the noise from the rotary kiln is neither the
white noise nor the colored noise.

5 Multifractal characteristic analysis

Based on above experimental results, the noise signals
from rotary kiln are not the white noise but determinate
signals with correlation. As the colored noise signal is
also correlative, whether the noise signals from rotary
kiln are the colored noise signals? Moreover, because
the colored signals are monofractal in nature, the mul-
tifractal trend fluctuation analysis (MFDFA) method
[56] is used to analyze the multifractal characteristics
of the noise signals from rotary kiln to distinguish them
from the monofractal colored noise.

5.1 Overview of MFDFA method and multifractal
characteristics

Assume that there is a time series xi with length N , then
the MFDFA method is summarized as follows [56].
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Table 3 Results of the surrogate analysis of the G1

wp1 wp2 wp3 wp4 wp5 Gao1 Gao2 Gao3 Gao4 Gao5

λ1 0.5490 0.1470 0.1510 0.3477 0.1746 0.1770 0.0547 0.1666 0.0836 0.0263

λ 0.7777 0.6262 0.5782 0.6965 0.6443 0.5912 0.2392 0.6329 0.4510 0.2407

σλ 0.0886 0.0949 0.0634 0.0964 0.0892 0.0819 0.0425 0.0742 0.0742 0.0455

S 2.5809 5.0479 6.7383 3.6194 5.2670 5.0587 4.3421 6.2840 4.9511 4.7114

p 0.0099 4.47E−07 1.60E−11 0.0003 1.39E−07 4.22E−07 1.41E−05 3.30E−10 7.38E−07 2.46E−06

The λ1 is the largest Lyapunov exponent of the original noise, the λ and the σλ, respectively, are the mean and standard deviation of the
related surrogate data, S is the significance, and p is the p value

Table 4 Results of the surrogate analysis of the G2

wp6 wp7 wp8 wp9 wp10 Gao6 Gao7 Gao8 Gao9 Gao10

λ1 0.4123 0.2123 0.3250 0.3194 0.4167 0.3091 0.0682 0.0903 0.1811 0.0617

λ 0.7910 0.8005 0.7355 0.5805 0.6692 0.7677 0.3534 0.4692 0.5442 0.1320

σλ 0.0818 0.0914 0.0924 0.0939 0.0774 0.0813 0.0528 0.0576 0.0771 0.0292

S 4.6281 6.4375 4.4415 2.7816 3.2626 5.6382 5.3984 6.5824 4.7108 2.4056

p 3.69E−06 1.21E−10 8.93E−06 0.0054 1.10E−03 1.72E−08 6.72E−08 4.63E−11 2.47E−06 1.61E−02

The λ1 is the largest Lyapunov exponent of the original noise, the λ and the σλ, respectively, are the mean and standard deviation of the
related surrogate data, the S is the significance, and the p is the p value

(1) The cumulative deviation sequence Y (i) of the
time series xi is calculated by

Y (i) =
i

∑

k=1

(xk − x̄), i = 1, . . . , N , (12)

where x̄ is the mean of the time series xi .
(2) The series Y (i) is divided into Ns non-overlapping

segments and the length of each segment is s, that
is, Ns = [N/s], where [·] means that the number
is rounded down to the nearest integer. Then, the
local variance of each segment v(v = 1, . . . , Ns)

is calculated by

F2(v, s) = 1

s
·

s
∑

i=1

{Y [(v − 1)s + i] − yv(i)}2 ,

(13)

where yv(i) is the local trend function in segment v
and fitted by the m order polynomial based on the
least square method. Considering that big value of
m will lead to over fitting, m is set 1 in this paper,
as the values of the Ns are not all integers, that is,
a short section of data whose length less than s at
end of the series remains. To use the whole data,
the same computational procedure is repeated from

the end to the head. Thus, 2Ns intervals with the
same length are obtained. Then, the local variance
of each segment v(v = Ns + 1, . . . , 2Ns) is cal-
culated by

F2(v, s)= 1

s

s
∑

i=1

{Y [N − (v − Ns)s + i] − yv(i)}2 ,

(14)

(3) By averaging the local variances in all segments,
the qth-order fluctuation function for each scale s
is obtained as

Fq(s) =
{

1

2Ns

2Ns∑

v=1

[F2(v, s)]q/2

}1/q

, q �= 0,

(15)

F0(s) = exp

{

1

4Ns

2Ns∑

v=1

ln[F2(v, s)]
}

, q = 0.

(16)

(4) Based on Eq. (17), the slope of double logarithmic
plot of Fq(s) versus s for each q is estimated by the
least square fit, and the slope is called as the gener-
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alized Hurst exponent or qth-order Hurst exponent
h(q):

Fq(s) ∼ sh(q). (17)

Theoretically, h(q) is a function of q for multifractal
series and a constant independent of q for monofractal
series. Meanwhile, qth-order scaling exponent τ(q),
also called mass exponent, is expressed as

τ(q) = qh(q) − 1. (18)

As h(q) is a constant independent of q for the
monofractal series, it is obvious that τ(q) is linear with
q for monofractal series. However, τ(q) is nonlinear
with q for multifractal series.

Through the Legendre transformation [57,58],
another quantitative measurement of the multifractal
characteristic is the singularity spectrum or multifrac-
tal spectrum f (α):

α = τ ′(q), (19)

f (α) = αq − τ(q) (20)

where α is called the Holder exponent or the singular-
ity exponent and f (α) is the singularity dimension of
sub-series with the same Holder exponent α. And the
two parameters (α and f (α)) constitute themultifractal
spectrum. Moreover, for the monofractal, α = τ ′(q) =
h(q) is based on Eqs. (18) and (19); then, f (α) = 1
in Eq. (20). Meanwhile, h(q) is constant (recorded as
c ) and h′(q) = 0, α = τ ′(q) = h(q) + qh′(q) = c
is based on Eqs. (18) and (19), that is, theoretically,
for the monofractal, the values of the Holder exponent
α and the Hurst exponent h(q) are equal, and there is
only one point (c, 1) in the multifractal spectrum.

In order to intuitively show the differences between
the colored noise and the noise from rotary kiln, theqth-
order Hurst exponent, the qth-order scaling exponent
and the multifractal spectrum are used to measure their
multifractal characteristics. Please see reference [30,
56,59] about the detail of the multifractal theory.

5.2 Multifractal analysis of two kinds of monofractal
colored noise

The power-law noise is a general term for a class of
noise, like thewhite noise, the pink noise and the brown

noise. And they have been seen and studied as the back-
ground noise in many fields [11–13]. Moreover, they
have some statistical features. Like, there is a power
relationship between their power spectral densities and
the frequency as follows:

S( f ) ∝ 1/ f α, (21)

where the S( f ) is the power spectral density and the
f is the frequency. In particular, the α is real valued
and α ∈ [−2, 2]. This is the reason why they are called
as the power-law noise. For the white noise, α = 0,
that is, S( f )White ∝ 1/ f 0. For the pink noise, α = 1,
that is, S( f )Pink ∝ 1/ f . For the brown noise, α = 2,
that is, S( f )Brown ∝ 1/ f 2. In this paper, two kinds of
monofractal colored noise (pink noise and brownnoise)
taken as an example are compared to the noise from
the rotary kiln. The two kinds of noise are generated
using the following commends based on DSP System
Toolbox in MATLAB 2016b.

whiteNoise = dsp.ColoredNoise(0,1e4,1);
pinkNoise = dsp.ColoredNoise(1,1e4,1);
brownNoise = dsp.ColoredNoise(2,1e4,1);
rng default;
white=whiteNoise();
pink = pinkNoise();
brown=brownNoise();
For the two parameters of MFDFA method, val-

ues of q are chosen from −5 to 5 with 101 equally
spaced values and values of s are chosen from 8 to
1024 with 19 equally spaced values. Then, relative qth-
order Hurst exponent curves, qth-order scaling expo-
nent curves andmultifractal spectra are drawn in Fig. 9.
It is obvious that the two h(q) curves are almost hor-
izontal and, respectively, close to their theoretical val-
ues 1 and 1.5. Meanwhile, two τ(q) curves are linear
with q and their slopes are respective close to 1 and
1.5. Thus, it is evidenced that the two kinds of colored
noise signals are monofractal. In addition, as there are
some biases between the practical value and the the-
oretical value, each Hurst exponent h(q) curve is not
horizontal strictly and eachmultifractal spectrum is not
one point but has small width in Fig. 9. Furthermore,
except for the two colored noise signals, there are other
kinds of colored noise signals which are not analyzed
in this paper. However, they are all monofractal [60].
Then, if the noise signals from rotary kiln are multi-
fractal, they are not any kinds of monofractal colored
noise.
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Fig. 9 Characteristics of
the two kinds of
monofractal colored noise.
(Color figure online)
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5.3 Multifractal analysis of noise from rotary kiln

Considering suggestions in papers [56,59,61,62] and
several experimental results of the noise signals, values
ofq are chosen from−20 to 20with 101 equally spaced
values and values of s are chosen from 4 to 128 with
19 equally spaced values in this paper. Then, the qth-
order scaling exponent curves, qth-order Hurst expo-
nent curves andmultifractal spectra of the noise signals
from rotary kiln are, respectively, drawn in Figs. 10, 11
and 12. And it is obvious that different noises have dif-
ferent shapes. However, compared with relative curves
in Fig. 9, the noise signals from rotary kiln also have
some same characteristics which are multifractal evi-
dents:

(1) All qth-order scaling exponent curves τ(q) are
nonlinear as shown in Fig. 10.

(2) Between q = −20 and q = 20, all qth-order Hurst
exponent curves are not independent of the q but
decrease with the increasing of the q as shown in
Fig. 11.

(3) All multifractal spectra have big width as shown
in Fig. 12.

Moreover, multifractal characteristics of the noise sig-
nals are measured qualitatively as shown in Table 5,
where 	h = hmax − hmin is the variational range of
h(q). The	α = αmax −αmin is the width of multifrac-
tal spectrum and measures the degree of fluctuation of
time series, that is, the bigger the 	α is, the more dras-
tic the fluctuation of time series is and the stronger the
multifractal strength is. Generally, the bigger the values
of	h and	α are, the stronger themultifractal strength
is. Thus, based on above results, it is evidenced that the
noise signals from rotary kiln are multifractal rather
than the monofractal colored noise.

As is well known, the monofractal series can be
characterized by the Hurst exponent (H ). Namely, if
H > 0.5, the time series is persistent and has long-
range correlation. If H < 0.5, the time series is anti-
persistent and has short-range correlation. If H = 0.5,
the time series is uncorrelated [56,60]. For the multi-
fractal time series, it is analyzed by using different val-
ues of q to highlight the different scale fluctuationmag-
nitudes of time series. Namely, the positive q relates to
the segments with large fluctuation magnitudes and the
negative q relates to the segments with small fluctua-
tion magnitudes. Then, in Fig. 11a, c, the Hurst expo-
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Fig. 10 qth-order scaling
exponent. a G1_wpd, b
G1_Gao, c G2_wpd, d
G2_Gao
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Fig. 11 qth-order Hurst exponent. a G1_wpd, b G1_Gao, c G2_wpd, d G2_Gao

nents of all the small fluctuation magnitudes and a little
large fluctuationmagnitudes of noise signals are bigger
than 0.5, that is, they are persistent long-range correl-
ative. For Fig. 11b, d, the Hurst exponents of all the
large fluctuation magnitudes and a little small fluctua-
tion magnitudes of noise signals are smaller than 0.5,
that is, they are anti-persistent short-range correlative.

Thus, the noise signals from rotary kiln have both the
persistent long-range correlation and the anti-persistent
short-range correlation. Moreover, the two contradic-
tory features interact and together decide the whole
correlation and fluctuation of each noise from rotary
kiln, which means the intrinsic dynamic mechanisms
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Fig. 12 Multifractal spectra. a G1_wpd, b G1_Gao, c G2_wpd, d G2_Gao

Table 5 Multifractal
behaviors of original noise
from rotary kiln (the 	h is
the variational range of h(q)

and the 	α is the width of
multifractal spectrum)

	h 	α 	h 	α

wpd1 0.9674 1.1127 Gao1 1.3049 1.4924

wpd2 1.3581 1.5536 Gao2 1.4871 1.6688

wpd3 1.0973 1.2590 Gao3 1.3893 1.5497

wpd4 1.1596 1.3486 Gao4 1.1482 1.3038

wpd5 1.3087 1.5140 Gao5 1.1671 1.3014

wpd6 1.0456 1.2106 Gao6 1.1451 1.3136

wpd7 1.3373 1.5275 Gao7 1.3919 1.5206

wpd8 1.1483 1.3296 Gao8 1.3681 1.5542

wpd9 1.3120 1.5329 Gao9 1.2353 1.4034

wpd10 1.1662 1.3402 Gao10 1.0575 1.1869

of the noise from rotary kiln are more complex than
those of monofractal colored noise signals.

For the time series with the anti-persistent short-
range correlation, the tendency of two points at adja-
cent times of series is opposite and the whole series
will always revert to its mean value [56,60], that is,
the anti-persistent short-range correlation will increase
the difficulty of effective prediction. Then, the anti-
persistent short-range correlation is a reason why the
determinate noise from rotary kiln cannot be predicted

by some models. But those unsuccessful predictions of
the noise from rotary kiln do not indicate that the noise
from rotary kiln is unpredictable.

5.4 Multifractal source of noise from rotary kiln

The twocontradictorymultifractal characteristicsmake
the dynamic behaviors of the noise signal from rotary
kiln become more complex. Then, the source of multi-
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Table 6 Multifractal
behaviors of shuffled noise
from rotary kiln (the 	h is
the variational range of h(q)

and the 	α is the width of
multifractal spectrum)

	h 	α 	h 	α

wpd1 0.1534 0.3066 Gao1 0.5292 0.8658

wpd2 0.0480 0.1015 Gao2 0.0736 0.1643

wpd3 0.0766 0.1615 Gao3 0.2076 0.4565

wpd4 0.0933 0.1918 Gao4 0.3777 0.6341

wpd5 0.0645 0.1495 Gao5 0.3484 0.5735

wpd6 0.0701 0.1497 Gao6 0.0937 0.1939

wpd7 0.1252 0.2506 Gao7 0.3034 0.5624

wpd8 0.0890 0.1957 Gao8 0.3675 0.6778

wpd9 0.0763 0.2038 Gao9 0.2705 0.5323

wpd10 0.1149 0.2509 Gao10 0.1374 0.2668

fractality of the noise from rotary kiln should be further
explored and analyzed. In general, there are two main
kinds of multifractality that could be distinguished
[56,63]. One is generated by the diverse long-range
temporal correlations of small and large fluctuations.
However, this kind of temporal correlation could be
removed by the shuffling procedure. Then, relative qth-
order Hurst exponent h(q) becomes a constant 0.5, that
is, the shuffled series is no longermultifractal. Theother
is owing to the wide probability density distribution of
the time series, and this kind of multifractality could
not be destroyed by the shuffling procedure, that is, the
relative qth-order Hurst exponent h(q) has no change
after shuffling. Furthermore, if the shuffled series still
shows multifractal but becomes weaker, it means the
two factors are both present. Besides, the shuffling pro-
cedure is introduced in [63,64].

In order to ensure each noise series from rotary
kiln is shuffled enough, all values in each noise series
are randomly interchanged for 200,000 times [56,63].
Then, the 	h and 	α of shuffled noise signals from
rotary kiln are calculated by the MFDFA method and
the results are listed in Table 6. Compared with the rel-
ative values in Table 5, it is obvious that the multifrac-
tality could not be destroyed fully, but all the values
become much smaller. Even many values in Table 6
leave one tenth of relative values in Table 5. Thus, the
two factors are both present for the multifractality of
noise signals from rotary kiln. In particular, the long-
range temporal correlation is the main factor for gen-
erating the multifractality of the noise from rotary kiln.
Further, it also implies that the persistent long-range
correlation is the main characteristic compared with

the anti-persistent short-range correlation, that is, the
anti-persistent short-range correlation only increases
the difficulty of prediction but cannot negate the noise
from rotary kiln are predictable.

6 Conclusion

In this paper, the chaotic and multifractal characteris-
tics of the noise of thermal variables from the rotary kiln
are analyzed to explore some intrinsic dynamic charac-
teristics of the noise. The analyzed results of the noise
signals are not the same. However, based on exper-
imental results, still five common characteristics are
discovered firstly.

(1) Those noise signals are neither the white noise nor
monofractal colored noise signals.

(2) Those noise signals all have the high-dimensional
chaotic characteristic, which implies the noise sig-
nals are deterministic and theoretically predictable
for short term.

(3) Those noise signals all have both persistent and
anti-persistent multifractal characteristics, which
means dynamicmechanisms of those noise signals
from rotary kiln are more complex than that of
monofractal colored noise signals.

(4) The anti-persistent multifractal characteristic is a
reason why determinate noise signals from rotary
kiln cannot be successfully predicted, but it cannot
negate the predictable of noise from rotary kiln.

(5) The multifractality of those noise signals are gen-
erated by the long-term temporal correlation and
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wide probability density distribution together. In
particular, the former is the main factor.

Further, based on the discoveries in the paper, pre-
vious works of multifractal theories and models, two
ideas about modeling multifractality of the noise sig-
nals are proposed below as the warm-up for modeling
the noise from rotary kiln in future.

(1) Data-based model. The fractal is used to measure
the self-similarity relationship between the part
and the whole. Moreover, the multifractal process
could be regarded as the amalgamation of the infi-
nite number of monofractal subprocesses and each
monofractal subprocess is characterized by a sin-
gleHolder exponent. Then, it may be a feasible idea
that the multifractality of noise signals from rotary
kiln may be constructed by some monofractal sig-
nalswith some characteristics.Moreover, the key of
construction is to recurrence the complex relation-
ship of the interaction of subprocesses as accurately
as possible. And many neural network models may
be candidates. Furthermore, it also need to consider
the kind of monofractal series.

(2) Mathematic model. Some economists proposed
many multifractal models to model financial time
series. The volatilities of many financial data are
random-like but hierarchical in nature, which is
similar to the noise signals from rotary kiln. Then,
those multifractal models are inspirations for mod-
eling the noise.However, as thosemultifractalmod-
els are based on some assumptions which may be
not fit for the noise signals, they should not be used
directly but be improved.

The presence of chaotic and multifractal character-
istics in the noise from rotary kiln will change the view
about noise and expand new methods to deal with the
noise. In particular, it will improve some filtering algo-
rithms of industrial signals, mechanism-based model-
ingmethods and control strategies based on the hypoth-
esis of the white noise and the monofractal colored
noise. Furthermore, it will also offer some enlighten-
ment for other fields.
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A Appendix

A.1 The wavelet packet decomposition method

The steps of noise extraction based the wavelet packet
decomposition (WPD) method are introduced as fol-
lows. Moreover, please see Ref. [46,47] for the more
details.

Step 1. Thewavelet packet decomposition (WPD) and
the confirmation of the best basis. In the point
of view of compression, the standard wavelet
transform may not produce the best result,
since it is limited to wavelet bases that increase
by a power of two toward the low frequencies,
that is, the best basis of the WPD should be
found out after the WPD. Moreover, the best
basis corresponds to the minimum entropy or
maximum information for the distribution of
coefficients [46]. In this paper, the first step
can be realized using the command “wpdec”
in MATLAB.

Step 2. The confirmation of the thresholding value.
Generally, small coefficients are mostly noises
and large coefficients contain the actual sig-
nal. Then, a thresholding value should be pro-
posed to distinguish small coefficients and
large coefficients. The penalization method is
proposed to calculate the universal threshold-
ing value and can be realized using the com-
mand “wpbmpen” in MATLAB.

Step 3. The reconstruction of the signal based on
wavelet transform. Donoho [47] pointed out
that only coefficients whose absolute value is
higher than the predefined threshold value is
retained. Then, in this paper, the soft thresh-
olding method [47] is used to replace wavelet
transform coefficients as follows:
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Fig. 13 Illustration of noise extraction using the Gao method.
The si is the value of the thermal signal of rotary kiln, si and
s j are the mean value, and xi is the value of the extracted noise
signal

Rw
p
i =

{

0, if |w p
i | < thr

sign(w p
i )(|w p

i | − thr), if |w p
i | > thr

(22)

where the w
p
i is the wavelet transform coeffi-

cient of the i th sub-signal in the pth level, the
Rw

p
i is the replace wavelet transform coeffi-

cient of the i th sub-signal in the pth level and
the thr is the universal threshold which is cal-
culated by the penalization method [47]. After
replacing wavelet transform coefficients, the
retained coefficients are used to reconstruct
the useful signal. And the denoise procedure
is realized using the command “wpdencmp”
in Matlab.

Step 4. The noise signal is extracted through subtract-
ing the useful signal from the original signal.

A.2 The Gao method

The Gao method [65] is a moving average method in
nature, and the illustration of noise extraction using
the Gao method is shown in Fig. 13. Moreover, the
procedure is introduced as follows.

Step 1. From the head to the end, l signal points are
selected as a segment in turn.

Step 2. The average value of each segment is calcu-
lated.

Step 3. The average value of each segment is sub-
tracted by the l signal values of relative seg-
ment. Then, l noise values in each segment are
extracted.

Step 4. The whole noise time series are extracted.

The higher frequency of noise, the smaller the value
of the l is selected [65]. In our paper, we set l = 2, that

is, two points of signals are selected as a segment in turn
and the average value si = (si + si+1)/2 is calculated.
Then, each value of noise is calculated through xi+1 =
si+1 − si .
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